Random variable

1) Definition: A variable whose value is the outcome of a random experiment
2) Types:

- Discrete: Assumes only countable values
- Continuous: Assumes any values

Probability Distribution of a Discrete Random Variable

- $0 \leq P(x) \leq 1$ for each x
- $\sum P(x)=1$
- Mean: $\mu=\sum x P(x)$
- Variance: $\sigma^{2}=\sum x^{2} P(x)-\mu^{2}$
- Standard Deviation: $\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum x^{2} P(x)-\mu^{2}}$
- Bar Graph: x - values marked on the horizontal axis,
$P(x)$ represents the height of the corresponding bar for each x - values on the vertical axis.

The Binomial Probability Distribution

- Terms \& Conditions:

1. n identical trials with only two possible outcomes for each trial
2. Probability of the two outcomes remain constant.
3. The trials are independent of each other.

- Binomial Formula: $P(x)={ }_{n} C_{x} p^{x} q^{n-x}$ where

1. $n=$ total number of trials
2. $p=$ probability of success, $0 \leq p \leq 1$
3. $q=1-p=$ probability of failure, $0 \leq q \leq 1$
4. $x=$ number of successes in n trials
5. $n-x=$ number of failures in n trials
6. ${ }_{n} C_{x}=\frac{n!}{(n-x)!x!}$

- Mean: $\mu=n p$
- Variance: $\sigma^{2}=n p q$
- Standard Deviation: $\sigma=\sqrt{\sigma^{2}}=\sqrt{n p q}$

The Multinomial Distribution:

- Terms \& Conditions:

1. n identical trials with more than two possible outcomes for each trial
2. Probability of each outcome remain constant.
3. The trials are independent and mutually exclusive of each other.

- Multinomial Formula:
$P\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{n!}{x_{1}!\cdot x_{2}!\cdot \cdots \cdot x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$
where

1. $n=$ total number of trials, $k=$ total number of events.
2. $P\left(E_{1}\right)=p_{1}, P\left(E_{2}\right)=p_{2}, P\left(E_{3}\right)=p_{3}$, and so on.
3. $0 \leq p_{k} \leq 1, \sum p_{k}=1$
4. x_{1} outcomes from event E_{1}, x_{2} outcomes from event
E_{2}, x_{3} outcomes from event E_{3}, and so on from all k events.

The Hypergeometric Distribution:

- Terms \& Conditions:

1. Sampling from small population without replacement.
2. The trials are not independent from each other.
3. The outcomes belong to one of the two types.

- Binomial Formula: $P(x)=\frac{{ }_{r} C_{x} \bullet{ }_{N-r} C_{n-x}}{{ }_{N} C_{n}}$ where

1. $N=$ Size of the population
2. $n=$ Size of the sample(Number of trials)
3. $r=$ Number of successes in the population
4. $x=$ Number of successes in n trials.
5. $N-n=$ Number of failures in the population
6. $n-x=$ Number of failures in n trials
7. ${ }_{n} C_{x}=\frac{n!}{(n-x)!x!}$

The Poisson Distribution:

- Terms \& Conditions:

1. Applies to occurrences over a specified interval.
2. The occurrences are random, independent, and uniformly distributed over the specified interval.

- The Poisson Distribution Formulas:

1. $P(x)=\frac{\mu^{x} e^{-\mu}}{x!}$ where

- $\mu=$ mean
- X is the number of occurrences of an event over the interval being used.
- $e \approx 2.71828$

2. The standard deviation is $\sigma=\sqrt{\mu}$
3. Examples of intervals: time, distance, area, volume, or some similar units.
4. You may use the Poisson Distribution as an approximation to the $\operatorname{Binomial}$ distribution when n is $\operatorname{large}(n \geq 100)$ and p is $\operatorname{small}(n p \leq 10)$.
